Object Tracking Using Local Multiple Features and a Posterior Probability Measure
نویسندگان
چکیده
Object tracking has remained a challenging problem in recent years. Most of the trackers can not work well, especially when dealing with problems such as similarly colored backgrounds, object occlusions, low illumination, or sudden illumination changes in real scenes. A centroid iteration algorithm using multiple features and a posterior probability criterion is presented to solve these problems. The model representation of the object and the similarity measure are two key factors that greatly influence the performance of the tracker. Firstly, this paper propose using a local texture feature which is a generalization of the local binary pattern (LBP) descriptor, which we call the double center-symmetric local binary pattern (DCS-LBP). This feature shows great discrimination between similar regions and high robustness to noise. By analyzing DCS-LBP patterns, a simplified DCS-LBP is used to improve the object texture model called the SDCS-LBP. The SDCS-LBP is able to describe the primitive structural information of the local image such as edges and corners. Then, the SDCS-LBP and the color are combined to generate the multiple features as the target model. Secondly, a posterior probability measure is introduced to reduce the rate of matching mistakes. Three strategies of target model update are employed. Experimental results show that our proposed algorithm is effective in improving tracking performance in complicated real scenarios compared with some state-of-the-art methods.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملImage representation for generic object recognition using higher-order local autocorrelation features on posterior probability images
This paper presents a novel image representation method for generic object recognition by using higher-order local autocorrelations on posterior probability images. The proposed method is an extension of the bag-of-features approach to posterior probability images. The standard bag-of-features approach is approximately thought of as a method that classifies an image to a category whose sum of p...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملImage Classification Using Probability Higher-Order Local Auto-Correlations
In this paper, we propose a novel method for generic object recognition by using higher-order local auto-correlations on probability images. The proposed method is an extension of bag-of-features approach to posterior probability images. Standard bag-of-features is approximately thought as sum of posterior probabilities on probability images, and spatial co-occurrences of posterior probability ...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کامل